A new dairy cattle mating advice tool for Ireland which incorporates genomic information

Tara Carthy

Teagasc, Moorepark, Ireland

tara.carthy@teagasc.ie

World Congress on Genetics Applied to Livestock Production 12/01/2018

Introduction

- Mating advice tool
- Best combination of potential mating
 - » Maximise long-term genetic gain
 - » Minimise closely related mating
 - » Homogenous herd
- Incorporate genomics into mating advice

Objectives

Incorporating genomic information into mating advice tools

Handle un-genotyped animals in a population

Achieve more homogenous herd

Handling non-genotyped animals

Genotypes data

- 45,147 Holstein-Friesian animals
 - Imputed to Illumina BovineSNP50

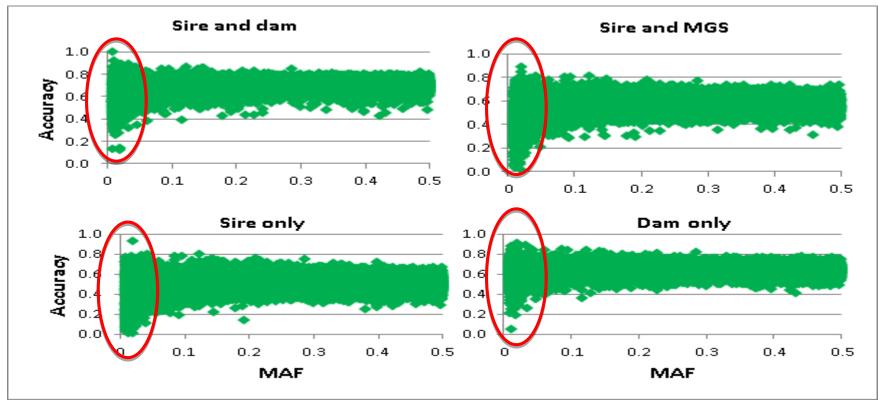
- 545 females had genotyped Sire, Dam, and Maternal-grandsire
 - Genotypes were masked

Predicting Allele Dosage

 Allele dosage was predicted following Genglers gene drop method

$$q_x = \begin{pmatrix} 1 & A_{xy}A_y^{-1} \end{pmatrix} \begin{pmatrix} \mu \\ q_y - 1\mu \end{pmatrix}$$

 Accuracy was determined as the correlation between the true allele dosage and the predicted allele dosage


Prediction Accuracy

Scenario	Animal	
SireDam	0.69	
SireMGS	0.57	
Sire	0.49	
Dam	0.63	

Accuracy was highest when both the sire and dam where genotyped

SNP prediction accuracy

Estimation of relationships

Estimation of co-ancestry

Genomic relationships

$$a_{jk} = \frac{1}{N} \sum_{i=1}^{n} \frac{(x_{ij} - p_i)(x_{ik} - p_i)}{2p_i(1 - p_i)}$$

- Pedigree relationships
- Predicted genomic relationship

Prediction of genomic relationships

	Correlation	Regression coefficient
Pedigree	0.66	0.60
Predicted allele dosage with sire and dam genotypes	0.91	0.99
Predicted allele dosage with sire and maternal-grandsire genotypes	0.89	0.99
Predicted allele dosage with sire genotypes	0.89	1.02

Mating allocation

Proposed mating index

Index maximised in the herd using linear programing

white account for inbreeding depression

between the milk and fertility sub-index

Maximise sub-index while penalising animals that are too far from the

nce

Ma

Mating scenario

100 cows herd

10 Al Bulls

Mating scenario

100 cows herd

10 Al Bulls

	Random	Breeding Value	Proposed Index
Mating allocation	Randomly	Sequentially on expected progeny breeding value	Maximise proposed index in the herd

Mating allocation

- Three method of co-ancestry were used
 - Pedigree
 - Genomic
 - Predicted genomic (with sire and dam)
- Parameters examined
 - Expected progeny inbreeding (pedigree and genomic)
 - Variance in the herd

Effects on future progeny inbreeding

		p8-	,,,,	
Method	Ped	Pedigree inbreeding (%)		Genomic inbreeding
Random		4.01		-0.20
Breeding Value				

3.99

4.25

4.25

3.39

3.60

3.54

-0.36

-0.08

-0.07

-1.06

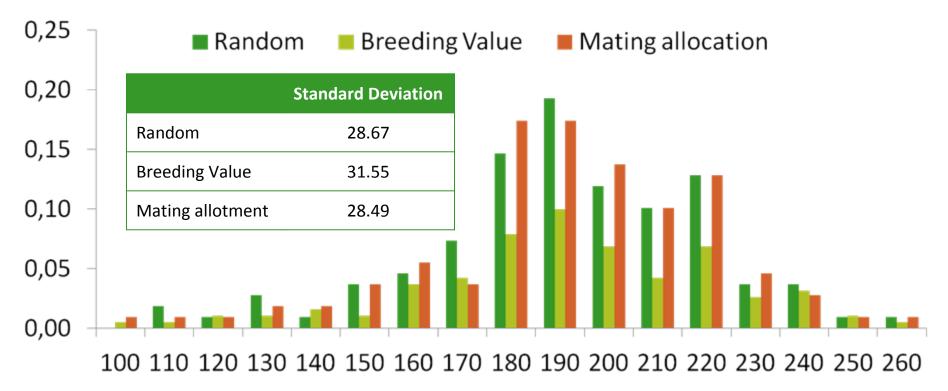
-1.68

-1.45

Pedigree

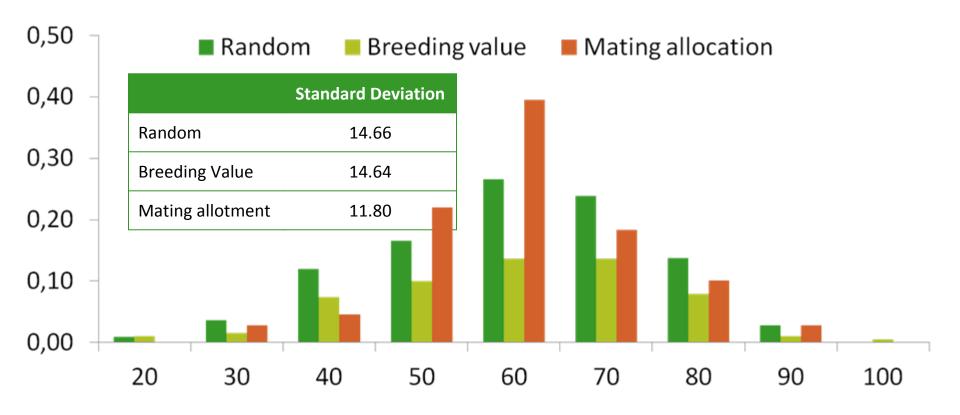
Genomic

Pedigree

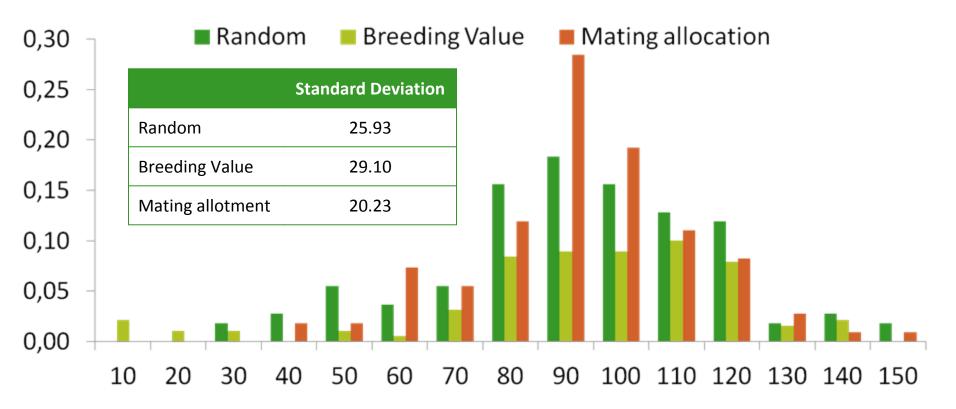

Genomic

Predicted genomic

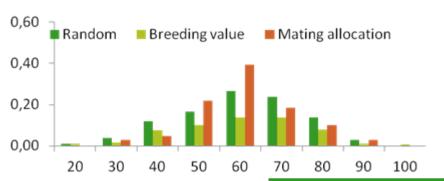
Predicted genomic

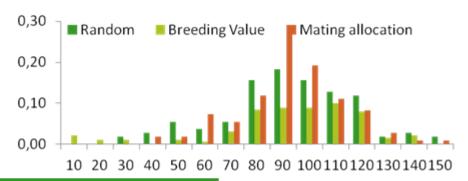

Mating allocation

Overall Breeding Value



Milk Sub-index




Fertility Sub-index

Difference between the milk and fertility sub-index

	Mean	Standard Deviation
Random	41.44	29.16
Breeding Value	43.15	23.91
Mating allotment	34.63	20.32

Conclusion

- Prediction of un-genotyped animals is possible
 - More relative information the better the prediction
 - Prediction of the minor allele in low MAF SNPs needs a close relatives
- The new mating index
 - Reduces herd variance within and between traits
 - Reducing future progeny inbreeding

Conclusion

- New mating advice program will be launched based on results presented here
 - Includes the new mating index
 - Include genomic inbreeding
 - » Revert to pedigree when genotypes are not present
- A cross-breeding version to maximise heterosis is also available

Acknowledgements

14/IA/2576

